105. Décomposition en éléments simples dans $\R(X)$, niveau 3

Vous allez voir qu’il est tout à fait possible de trouver la décomposition en éléments simples en effectuant, dès le début, un changement de variable sur les éléments de seconde espèce.

Soit à trouver la décomposition en éléments simples dans $\R(X)$ de $ F(X) =\dfrac {X^4+1}{ X^2(X^2+X+1)^2}.$

Vous posez $Y = X^2+X+1$ et vous allez écrire $F(X)$ comme un quotient de deux polynômes de $Y$, dont les coefficients sont des polynômes réels de degré inférieur à $1$ de la variable $X$. Formellement $F(X)$ s’écrit comme un quotient de deux polynômes appartenant à $(\R_1[X])[Y].$

Calculez le numérateur de la fraction rationnelle $F(X)$

Partez de la relation $X^2 = Y-X-1$ :

$\begin{align*}
X^3 &= XY-X^2-X\\
&=XY-(Y-X-1)-X\\
&=(-1+X)Y+1
\end{align*}$

$\begin{align*}
X^4 &= (-X+X^2)Y+X\\
&=(-X+Y-X-1)Y+X\\
&=(Y-2X-1)Y+X\\
&=Y^2+(-2X-1)Y+X.
\end{align*}$

Vous en déduisez que $\boxed{F(X)=\dfrac{Y^2+(-2X-1)Y+(X+1)}{(Y+(-X-1))Y^2}}.$

Effectuez la division selon les puissances croissantes

Vous divisez $Y^2+(-2X-1)Y+(X+1)$ par $Y+(-X-1)$ selon les puissances croissantes en $Y$ de façon à obtenir un reste qui soit un multiple de $Y^2$.

$\begin{array}{rrr|l}
(X+1) & +(-2X-1)Y & +Y^2 & (-X-1) + Y\\
(X+1) & +(-1)Y & & -1 \\ \hline
& (-2X)Y & +Y^2 \\
\end{array}$

Il a été possible d’éliminer le terme $(X+1)$ du quotient en choisissant $-1$ comme premier terme au quotient, mais éliminer le terme $-2XY$ semble plus délicat, étant donné que le quotient doit rester comme un polynôme appartenant à $(\R_1[X])[Y].$

Comment continuer ?

Pour éliminer le terme en $-2XY$, vous devez ajouter au quotient un terme de la forme $(aX+b)Y.$

Calculez le produit $(aX+b)(-X-1)$ :

$\begin{align*}
(aX+b)(-X-1) &= -aX^2+(-a-b)X-b \\
&=-a(-1-X+Y)+(-a-b)X-b\\
&=(a-b)-bX-aY.
\end{align*}$

Vous choisissez $a$ et $b$ pour que $a-b = 0$ et $-b=-2$, pas le choix il n’y a que $a=b=2$ qui conduit à l’égalité :

$(2X+2)(-X-1) = -2X-2Y.$

Terminez la division

$\begin{array}{rrr|l}
(X+1) & +(-2X-1)Y & +Y^2 & (-X-1) + Y\\
(X+1) & +(-1)Y & & -1 + (2X+2)Y \\ \hline
& (-2X)Y & +Y^2 \\
& -2XY-2Y^2&+(2X+2)Y^2 \\ \hline
& & (-2X+1)Y^2
\end{array}$

Vous avez obtenu que :

$Y^2+(-2X-1)Y+(X+1) = ((-X-1)+Y)(-1+(2X+2)Y) + (-2X+1)Y^2.$

En divisant par $Y^2((-X-1)+Y)$ vous aboutissez à la séparation de la partie polaire en $Y^2$ du reste.

$\begin{align*}
F(X)&=\dfrac{-1+(2X+2)Y}{Y^2}+\dfrac{-2X+1}{(-X-1)+Y} \\
&=\dfrac{2X+2}{Y}-\dfrac{1}{Y^2}+\dfrac{-2X+1}{(-X-1)+Y}\\
&= \dfrac{2X+2}{Y}-\dfrac{1}{Y^2}+\dfrac{-2X+1}{X^2}\\
&=\dfrac{2X+2}{Y}-\dfrac{1}{Y^2}-\dfrac{2}{X}+\dfrac{1}{X^2}.
\end{align*}$

Concluez

$\boxed{F(X) = \dfrac {X^4+1}{ X^2(X^2+X+1)^2} =\dfrac{2X+2}{X^2+X+1}-\dfrac{1}{(X^2+X+1)^2}-\dfrac{2}{X}+\dfrac{1}{X^2}}.$

Réagissez !

C’est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Partagez !

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées.