021. Calculez la limite de $\sqrt{x +\sqrt{x}}-\sqrt{x}$ quand $x \to +\infty$

Utilisez un développement asymptotique pour trouver le résultat.

$\begin{align*}
\sqrt{x +\sqrt{x}} &= \sqrt{x } \sqrt{1 + \dfrac{\sqrt{x}}{x} } \\
&= \sqrt{x } \left(1 + \dfrac{\sqrt{x}}{2x} + O\left(\dfrac{1}{x} \right) \right) \\
&= \sqrt{x } + \dfrac{1}{2} + O\left(\dfrac{1}{\sqrt{x}} \right).
\end{align*}$

Vous déduisez $\lim_{x\to +\infty} \sqrt{x+\sqrt{x}}-\sqrt{x} = \dfrac{1}{2}.$

Réagissez !

C’est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Partagez !

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées.