Votre navigateur n'accepte pas le Javascript.La navigation sur ce site risque de ne pas fonctionner correctement.

293. Calculez le déterminant d’une matrice de Hilbert (1/2)

Il rappelé que pour tout entier $n$ supérieur ou égal à $2$, la matrice de Hilbert d’ordre $n$ est la matrice réelle carrée notée $H_n$ qui est définie par :

\forall (i,j)\in\llbracket1, n\rrbracket, (H_n)_{i,j} = \frac{1}{i+j-1}.

Par exemple, la matrice $H_4$ est définie par :

H_4 = \begin{pmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}& \frac{1}{5}\\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}& \frac{1}{6}\\
 \frac{1}{4} & \frac{1}{5}& \frac{1}{6}& \frac{1}{7}
\end{pmatrix}.

La matrice $H_3$ est définie par :

H_3 = \begin{pmatrix}
1 & \frac{1}{2} & \frac{1}{3}\\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{pmatrix}.

Déterminez une relation de récurrence entre $\det H_4$ et $\det H_3$

Vu que la matrice $H_3$ peut être extraite de la matrice $H_4$ à partir du bloc supérieur $3\times 3$ placé à gauche, il semble légitime de chercher à calculer le déterminant de $H_4$ en fonction du déterminant de $H_3.$

Etant donné qu’un déterminant ne change pas suite à une opération de transvection appliquée sur les lignes ou les colonnes, vous commencez par l’opération $C_3\leftarrow C_3-C_4$ :

\begin{align*}
\det H_4 &= \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3}-\frac{1}{4} & \frac{1}{4}\\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}-\frac{1}{5}& \frac{1}{5}\\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}-\frac{1}{6}& \frac{1}{6}\\
 \frac{1}{4} & \frac{1}{5}& \frac{1}{6}- \frac{1}{7}& \frac{1}{7}
\end{vmatrix}
\\
&= \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{12} & \frac{1}{4}\\
\frac{1}{2} & \frac{1}{3} & \frac{1}{20}& \frac{1}{5}\\
\frac{1}{3} & \frac{1}{4} & \frac{1}{30}& \frac{1}{6}\\
 \frac{1}{4} & \frac{1}{5}& \frac{1}{42}& \frac{1}{7}
\end{vmatrix}.
\end{align*}

Vous poursuivez avec l’opération $C_2\leftarrow C_2-C_4$ en laissant volontairement les fractions non simplifiées pour garder les mêmes dénominateurs sur la colonne $2$ :

\begin{align*}
\det H_4 &=  \begin{vmatrix}
1 & \frac{1}{2} -\frac{1}{4} & \frac{1}{12} & \frac{1}{4}\\
\frac{1}{2} & \frac{1}{3} -  \frac{1}{5}& \frac{1}{20}& \frac{1}{5}\\
\frac{1}{3} & \frac{1}{4} -  \frac{1}{6}& \frac{1}{30}& \frac{1}{6}\\
 \frac{1}{4} & \frac{1}{5} -  \frac{1}{7}& \frac{1}{42}& \frac{1}{7}
\end{vmatrix}
\\
&=\begin{vmatrix}
1 & \frac{2}{8} & \frac{1}{12} & \frac{1}{4}\\
\frac{1}{2} & \frac{2}{15}& \frac{1}{20}& \frac{1}{5}\\
\frac{1}{3} & \frac{2}{24}& \frac{1}{30}& \frac{1}{6}\\
 \frac{1}{4} & \frac{2}{35}& \frac{1}{42}& \frac{1}{7}
\end{vmatrix}.
\end{align*}

Vous effectuez l’opération $C_1\leftarrow C_1-C_4$ :

\begin{align*}
\det H_4 &= \begin{vmatrix}
1- \frac{1}{4} & \frac{2}{8} & \frac{1}{12} & \frac{1}{4}\\
\frac{1}{2}- \frac{1}{5} & \frac{2}{15}& \frac{1}{20}& \frac{1}{5}\\
\frac{1}{3} - \frac{1}{6}& \frac{2}{24}& \frac{1}{30}& \frac{1}{6}\\
 \frac{1}{4} - \frac{1}{7}& \frac{2}{35}& \frac{1}{42}& \frac{1}{7}
\end{vmatrix}
\\
&=\begin{vmatrix}
\frac{3}{4} & \frac{2}{8} & \frac{1}{12} & \frac{1}{4}\\
\frac{3}{10} & \frac{2}{15}& \frac{1}{20}& \frac{1}{5}\\
\frac{3}{18}& \frac{2}{24}& \frac{1}{30}& \frac{1}{6}\\
 \frac{3}{28}& \frac{2}{35}& \frac{1}{42}& \frac{1}{7}
\end{vmatrix}.
\end{align*}

Vous constatez que les dénominateurs de la première ligne sont tous des multiples de $4$, ceux de la deuxième ligne sont tous des multiples de $5$, ceux de la troisième ligne sont des multiples de $6$, ceux de la quatrième ligne sont des multiples de $7.$ Le déterminant étant une forme multilinéaire, il vient :

\begin{align*}
\det H_4 
&=\frac{1}{4}\times \frac{1}{5}\times \frac{1}{6}\times \frac{1}{7}\times \begin{vmatrix}
\frac{3}{1} & \frac{2}{2} & \frac{1}{3} & 1\\
\frac{3}{2} & \frac{2}{3}& \frac{1}{4}& 1\\
\frac{3}{3}& \frac{2}{4}& \frac{1}{5}& 1\\
 \frac{3}{4}& \frac{2}{5}& \frac{1}{6}& 1
\end{vmatrix}.
\end{align*}

Les numérateurs de la première colonne sont des multiples de $3$ et ceux de la deuxième colonne sont des multiples de $2$. Ainsi :

\begin{align*}
\det H_4 
&=\frac{2\times 3}{4\times 5 \times 6\times7}\times \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3} & 1\\
\frac{1}{2} & \frac{1}{3}& \frac{1}{4}& 1\\
\frac{1}{3}& \frac{1}{4}& \frac{1}{5}& 1\\
 \frac{1}{4}& \frac{1}{5}& \frac{1}{6}& 1
\end{vmatrix}
\\
&=\frac{(2\times 3)^2}{7 !}\times \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3} & 1\\
\frac{1}{2} & \frac{1}{3}& \frac{1}{4}& 1\\
\frac{1}{3}& \frac{1}{4}& \frac{1}{5}& 1\\
 \frac{1}{4}& \frac{1}{5}& \frac{1}{6}& 1
\end{vmatrix}
\\
&=\frac{(3 !)^2}{7 !}\times \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3} & 1\\
\frac{1}{2} & \frac{1}{3}& \frac{1}{4}& 1\\
\frac{1}{3}& \frac{1}{4}& \frac{1}{5}& 1\\
 \frac{1}{4}& \frac{1}{5}& \frac{1}{6}& 1
\end{vmatrix}.
\end{align*}

Posez :

D_4 = \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3} & 1\\
\frac{1}{2} & \frac{1}{3}& \frac{1}{4}& 1\\
\frac{1}{3}& \frac{1}{4}& \frac{1}{5}& 1\\
 \frac{1}{4}& \frac{1}{5}& \frac{1}{6}& 1
\end{vmatrix}.

Le déterminant d’une matrice est égal à celui de sa transposée, vous avez :

D_4 = \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}& \frac{1}{5}\\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}& \frac{1}{6}\\
 1 & 1& 1& 1
\end{vmatrix}.

Vous effectuez les mêmes opérations élémentaires que précédemment, à savoir $C_3\leftarrow C_3-C_4$ puis $C_2\leftarrow C_2-C_4$ et $C_1\leftarrow C_1-C_4$ :

D_4 = \begin{vmatrix}
\frac{3}{4} & \frac{2}{8} & \frac{1}{12} & \frac{1}{4}\\
\frac{3}{10} & \frac{2}{15}& \frac{1}{20}& \frac{1}{5}\\
\frac{3}{18}& \frac{2}{24}& \frac{1}{30}& \frac{1}{6}\\
 0& 0& 0& 1
\end{vmatrix}.

En développant ce déterminant par rapport à la dernière ligne, il vient :

D_4 = \begin{vmatrix}
\frac{3}{4} & \frac{2}{8} & \frac{1}{12} \\
\frac{3}{10} & \frac{2}{15}& \frac{1}{20}\\
\frac{3}{18}& \frac{2}{24}& \frac{1}{30}
\end{vmatrix}.

Puis vous factorisez la ligne $1$ par $\frac{1}{4}$, la ligne $2$ par $\frac{1}{5}$ et la ligne $3$ par $\frac{1}{6}$ :

D_4 = \frac{1}{4\times 5\times 6}\begin{vmatrix}
\frac{3}{1} & \frac{2}{2} & \frac{1}{3} \\
\frac{3}{2} & \frac{2}{3}& \frac{1}{4}\\
\frac{3}{3}& \frac{2}{4}& \frac{1}{5}
\end{vmatrix}.

Vous factorisez la colonne $1$ par $3$ et la colonne $2$ par $2$ :

\begin{align*}
D_4 &= \frac{2\times 3}{4\times 5\times 6}\begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3}& \frac{1}{4}\\
\frac{1}{3}& \frac{1}{4}& \frac{1}{5}
\end{vmatrix}\\
&= \frac{2\times 3}{4\times 5\times 6}\det H_3
\\
&= \frac{(2\times 3)^2}{6 !}\det H_3\\
&= \frac{(3 !)^2}{6 !}\det H_3.
\end{align*}

Comme :

\begin{align*}
\det H_4 
&=\frac{(3 !)^2}{7 !}\times D_4\\
&=\frac{(3 !)^2}{7 !}\times \frac{(3 !)^2}{6 !}\det H_3
\end{align*}

vous déduisez :

\boxed{\det H_4 =\frac{(3 !)^4}{{6 !}\times{7 !}}\det H_3.}

Le problème étant dégrossi, il reste à passer au cas général.

Déterminez une relation de récurrence entre $\det H_{n+1}$ et $\det H_n$

Soit $n$ un entier naturel supérieur ou égal à $2.$

Première partie

Par définition de la matrice $H_{n+1}$, vous avez :

\forall (i,j)\in\llbracket1, n+1\rrbracket, (H_{n+1})_{i,j} = \frac{1}{i+j-1}.

Vous appliquez à la matrice $H_{n+1}$ la succession d’opérations élémentaires suivante :

\left\{\begin{align*}
C_n&\leftarrow C_n-C_{n+1}\\
C_{n-1}&\leftarrow C_{n-1}-C_{n+1}\\
\vdots & \\
C_1&\leftarrow C_1-C_{n+1}.
\end{align*}
\right.

Vous appelez $K_{n+1}$ la matrice obtenue.

Pour tout $i\in\llbracket 1, n+1\rrbracket$ et pour tout $j\in\llbracket 1,n \rrbracket$ le coefficient $(K_{n+1})_{i,j}$ est égal à :

\begin{align*}
(K_{n+1})_{i,j} &= (H_{n+1})_{i,j} - (H_{n+1})_{i,n+1}\\
&=\frac{1}{i+j-1}-\frac{1}{i+n}\\
&=\frac{i+n}{(i+j-1)(i+n)}-\frac{i+j-1}{(i+n)(i+j-1)}\\
&=\frac{n+1-j}{(i+n)(i+j-1)}.
\end{align*}

Pour tout $i\in\llbracket 1, n+1\rrbracket$, vous avez :

\begin{align*}
(K_{n+1})_{i,n+1} &=  (H_{n+1})_{i,n+1}\\
&=\frac{1}{i+n}.
\end{align*}

Les opérations élémentaires de transvection utilisées ne changeant pas le déterminant initial, vous obtenez :

\det H_{n+1} = \det K_{n+1}.

Vous constatez que, pour tout $i\in\llbracket 1, n+1\rrbracket$, la ligne $i$ est factorisable par $\frac{1}{i+n}.$

Soit $L_{n+1}$ la matrice définie par :

\begin{align*}
\forall i\in\llbracket 1, n+1\rrbracket, \forall j\in\llbracket 1,n \rrbracket, (L_{n+1})_{i,j}=\frac{n+1-j}{i+j-1}
\\
\forall i\in\llbracket 1, n+1\rrbracket, (L_{n+1})_{i,n+1}=1.
\end{align*}

Vous obtenez :

\begin{align*}
\det K_{n+1} &=\left( \prod_{i=1}^{n+1}\frac{1}{i+n}\right) \det L_{n+1} \\
&=\left( \prod_{i=n+1}^{2n+1}\frac{1}{i}\right) \det L_{n+1} \\
&=\frac{n !}{\prod_{i=1}^{n} i}\left( \prod_{i=n+1}^{2n+1}\frac{1}{i}\right) \det L_{n+1} \\
&=\frac{n !}{\prod_{i=1}^{n} i}\frac{1}{\prod_{i=n+1}^{2n+1}i}  \det L_{n+1} \\
&=\frac{n !}{\prod_{i=1}^{2n+1} i} \det L_{n+1} \\
&=\frac{n !}{(2n+1) !} \det L_{n+1}.
\end{align*}

Quant à la matrice $L_{n+1}$, vous constatez que, pour tout $j\in\llbracket 1, n\rrbracket$ la colonne $j$ est factorisable par $n+1-j.$ Notez $H’_{n+1}$ la matrice définie par :

\begin{align*}
\forall i\in\llbracket 1, n+1\rrbracket, \forall j\in\llbracket 1,n \rrbracket, (H'_{n+1})_{i,j}=\frac{1}{i+j-1}
\\
\forall i\in\llbracket 1, n+1\rrbracket, (H'_{n+1})_{i,n+1}=1.
\end{align*}

$H’_{n+1}$ est la matrice $H_{n+1}$ dans laquelle la colonne $n+1$ a été remplacée par une colonne comportant tous ses coefficients égaux à $1.$

Les factorisations évoquées conduisent à :

\det L_{n+1} =\left( \prod_{j=1}^n (n+1-j) \right)\det H'_{n+1}.

Vous effectuez le changement de variable $k = n+1-j$ dans le produit. Quand $j=1$, $k=n$ et quand $j=n$, $k=1$ du coup :

\begin{align*}
\det L_{n+1} &=\left( \prod_{k=1}^nk \right)\det H'_{n+1}\\
&= (n !)\det H'_{n+1}.
\end{align*}

Vous déduisez :

\begin{align*}
\det H_{n+1} &= \det K_{n+1} \\
&=\frac{n !}{(2n+1) !} \det L_{n+1} \\
&=\frac{(n !)^2}{(2n+1) !} \det H'_{n+1}.
\end{align*}

Seconde partie

Notez $D_{n+1}$ la transposée de la matrice $H’_{n+1}.$

Alors :

\forall i\in\llbracket 1, n+1\rrbracket, \forall j\in\llbracket 1, n+1\rrbracket, (D_{n+1})_{i,j}=(H'_{n+1})_{j,i}.

Pour $i = n+1$, il vient :

 \forall j\in\llbracket 1, n+1\rrbracket, (D_{n+1})_{n+1,j}=(H'_{n+1})_{j,n+1} = 1.

Pour tout $i\in\llbracket 1, n\rrbracket$ vous avez :

 \forall j\in\llbracket 1, n+1\rrbracket, (D_{n+1})_{i,j}=(H'_{n+1})_{j,i} = \frac{1}{j+i-1} = \frac{1}{i+j-1}.

L’opération de transposition laisse invariant le déterminant, donc :

\det H'_{n+1} = \det D_{n+1}.

La matrice $D_{n+1}$ est rigoureusement identique à la matrice $H_{n+1}$ sur ses $n$ premières lignes, excepté la dernière qui contient des coefficients tous égaux à $1.$

Vous appliquez à la matrice $D_{n+1}$ la succession d’opérations élémentaires suivante, comme dans la première partie.

\left\{\begin{align*}
C_n&\leftarrow C_n-C_{n+1}\\
C_{n-1}&\leftarrow C_{n-1}-C_{n+1}\\
\vdots & \\
C_1&\leftarrow C_1-C_{n+1}.
\end{align*}
\right.

Vous appelez $K’_{n+1}$ la matrice obtenue. Les transvections utilisées ne modifient pas le déterminant. Donc :

\det D_{n+1} = \det K'_{n+1}.

Tout d’abord pour la ligne $n+1$ de $K’_{n+1}$ vous avez :

\begin{align*}
\forall j\in\llbracket 1, n\rrbracket, (K'_{n+1})_{n+1,j} = 0\\
(K'_{n+1})_{n+1,n+1} = 1. 
\end{align*}

Pour les autres lignes, pour tout $i\in\llbracket 1, n\rrbracket$ et pour tout $j\in\llbracket 1,n \rrbracket$ le coefficient $(K’_{n+1})_{i,j}$ est égal à :

\begin{align*}
(K'_{n+1})_{i,j} &= (D_{n+1})_{i,j} - (D_{n+1})_{i,n+1}\\
&= (H_{n+1})_{i,j} - (H_{n+1})_{i,n+1}\\
&=\frac{n+1-j}{(i+n)(i+j-1)}.
\end{align*}

Pour tout $i\in\llbracket 1, n\rrbracket$ vous factorisez la ligne $i$ par $\frac{1}{i+n}$. Puis, pour tout $j\in\llbracket 1, n\rrbracket$ vous factorisez la colonne $j$ par $n+1-j.$

La matrice obtenue est notée $K »_{n+1}.$ Il existe une matrice colonne $C_n$ de $M_{n,1}(\R)$ (dont les coefficients importent peu) et une matrice ligne $O_n\in M_{1,n}(\R)$ identiquement nulle telles que :

K''_{n+1} = \begin{pmatrix}
\begin{array}{c|c}
H_n & C_n\\\hline
O_n & 1
\end{array}
\end{pmatrix}.

D’une part, les factorisations fournissent :

\begin{align*}
\det K'_{n+1} &= \left(\prod_{i=1}^n \frac{1}{i+n}\right)  \left(\prod_{j=1}^n (n+1-j)\right) \det K''_{n+1}\\
&= \left(\prod_{i=n+1}^{2n} \frac{1}{i}\right)  \left(\prod_{j=1}^n j\right) \det K''_{n+1}\\
&=\frac{n !}{\prod_{i=1}^{n}i} \left(\prod_{i=n+1}^{2n} \frac{1}{i}\right)  \left(\prod_{j=1}^n j\right) \det K''_{n+1}\\
&=\frac{n !}{\prod_{i=1}^{n}i}\frac{1}{ \prod_{i=n+1}^{2n} i}   \left(\prod_{j=1}^n j\right) \det K''_{n+1}\\
&=\frac{n !}{\prod_{i=1}^{2n}i}\times (n !)   \det K''_{n+1}\\
&=\frac{(n !)^2}{(2n) !}   \det K''_{n+1}.
\end{align*}

En développant le déterminant de $K »_{n+1}$ par rapport à la dernière ligne, il vient :

\det K''_{n+1} = \det H_n.

En définitive :

\begin{align*}
\det H_{n+1} &=\frac{(n !)^2}{(2n+1) !} \det H'_{n+1}\\
&=\frac{(n !)^2}{(2n+1) !} \det D_{n+1}\\
&=\frac{(n !)^2}{(2n+1) !} \det K'_{n+1}\\
&=\frac{(n !)^2}{(2n+1) !} \times \frac{(n !)^2}{(2n) !}   \det K''_{n+1}\\
&=\frac{(n !)^4}{(2n) !\times (2n+1) !}    \det H_{n}.
\end{align*}

Concluez

La relation de récurrence est ainsi trouvée :

\boxed{\forall n\geq 2, \det H_{n+1} = \frac{(n !)^4}{(2n) !\times (2n+1) !}\det H_n.}

Prolongement

A partir de la relation de récurrence obtenue, pourriez-vous déterminer, pour tout entier $n$ supérieur ou égal à $2$, une expression de $H_n$ en fonction de $n$ ?

Pour en savoir davantage, vous êtes invité à lire le contenu rédigé dans l'article 294.

Partagez !

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.

Aidez-moi sur Facebook !

Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Lisez d'autres articles !

Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira !