Votre navigateur n'accepte pas le Javascript.La navigation sur ce site risque de ne pas fonctionner correctement.

300. Résolvez l’équation 4x + 3y + 2z + 7t = 15 où les inconnues sont entières

Soit à résoudre l’équation suivante :

4x+3y+2z+7t=15

où les inconnues $x$, $y$, $z$ et $t$ sont des nombres entiers.

Note. Une telle équation est qualifiée de diophantienne.

Utilisez des matrices pour limiter le nombre d’inconnues

Définissez la matrice ligne suivante :

A=\begin{pmatrix}
4& 3& 2& 7
\end{pmatrix}.

Pour tout $(x,y,z,t)\in\Z^4$ vous notez $X$ le vecteur colonne défini par :

X=\begin{pmatrix}
x\\y\\z\\t
\end{pmatrix}.

Enfin, vous notez $B$ la matrice suivante qui ne comporte qu’un seul coefficient :

B = \begin{pmatrix}
15
\end{pmatrix}.

L’équation à quatre inconnues de départ revient à résoudre l’équation suivante :

\boxed{AX=B}

où la seule inconnue est $X.$

Exprimez la matrice $A$ avec des matrices élémentaires

Un objectif premier : faire apparaître le $\mathrm{PGCD}$ des coefficients

Le plus grand diviseur commun des entiers $4$, $3$, $2$ et $7$ est $1.$

Démonstration. En effet, soit $d$ un diviseur commun des entiers $4$, $3$, $2$ et $7.$

Comme $d\mid 7$ et que $7$ est premier vous avez $d\in\{1,7\}.$ Si $d=7$, alors $7\mid 2$ donc $7\leq 2$ ce qui est absurde.

Du coup, $d=1.$

$1$ étant le seul diviseur commun aux quatre entiers $4$, $3$, $2$ et $7$ il vient :

\mathrm{PGCD}(4,3,2,7)=1.\ \blacksquare

Ce PGCD va être placé en haut à gauche, puis va être utilisé pour mettre des zéros.

Une transvection pour le $\mathrm{PGCD}$

Vous souhaitez passer de la matrice $A$ à la matrice suivante :

\begin{pmatrix}
1& 3& 2& 7
\end{pmatrix}.

Cela revient à remplacer la colonne $C_1$ par $C_1-C_2$ au niveau de la matrice $A.$

En effet :

\begin{pmatrix} 4&3&2&7 \end{pmatrix}\begin{pmatrix}
1 & 0 & 0 & 0\\
-1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 1&3&2&7 \end{pmatrix}.

Vous déduisez que vous pouvez passer de la matrice $\begin{pmatrix} 1&3&2&5 \end{pmatrix}$ à la matrice $\begin{pmatrix} 4&3&2&7 \end{pmatrix}$, en remplaçant la colonne $C_1$ par la colonne $C_1+C_2.$

En effet :

\begin{pmatrix} 1&3&2&7 \end{pmatrix}\begin{pmatrix}
1 & 0 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 4&3&2&7 \end{pmatrix}.

Ainsi :

A = \begin{pmatrix} 1&3&2&7 \end{pmatrix}\begin{pmatrix}
1 & 0 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}.

Une transvection et un premier zéro

Vous allez dans la suite passer de la matrice $\begin{pmatrix} 1&3&2&7 \end{pmatrix}$ à la matrice $\begin{pmatrix} 1&0&2&7 \end{pmatrix}$, ce qui revient à remplacer la colonne $C_2$ par la colonne $C_2-3C_1.$

En effet :

\begin{pmatrix} 1&3&2&7 \end{pmatrix}\begin{pmatrix}
1 & -3 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 1&0&2&7 \end{pmatrix}.

Vous déduisez que vous pouvez passer de la matrice $\begin{pmatrix} 1&0&2&7 \end{pmatrix}$ à la matrice $\begin{pmatrix} 1&3&2&7 \end{pmatrix}$, en remplaçant la colonne $C_2$ par la colonne $C_2+3C_1.$

Cela donne :

\begin{pmatrix} 1&0&2&7 \end{pmatrix}\begin{pmatrix}
1 & 3 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 1&3&2&7 \end{pmatrix}.

Du coup :

\begin{align*}
A
&=  

 \begin{pmatrix} 1&3&2&7 \end{pmatrix}\begin{pmatrix}
1 & 0 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}
\\
&=\begin{pmatrix} 1&0&2&7 \end{pmatrix}\begin{pmatrix}
1 & 3 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
1 & 0 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix} 1&0&2&7 \end{pmatrix}\begin{pmatrix}
4 & 3 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}. 
\end{align*}

Une transvection et un deuxième zéro

Vous déduisez que vous pouvez passer de la matrice $\begin{pmatrix} 1&0&0&7 \end{pmatrix}$ à la matrice $\begin{pmatrix} 1&0&2&7 \end{pmatrix}$, en remplaçant la colonne $C_3$ par la colonne $C_3+2C_1.$

\begin{pmatrix} 1&0&0&7 \end{pmatrix}\begin{pmatrix}
1 & 0 &2 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 1&0&2&7 \end{pmatrix}.

Du coup :

\begin{align*}
A
&=\begin{pmatrix} 1&0&2&7 \end{pmatrix}\begin{pmatrix}
4 & 3 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix} 1&0&0&7 \end{pmatrix}\begin{pmatrix}
1 & 0 &2 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
4 & 3 & 0 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix} 1&0&0&7 \end{pmatrix}\begin{pmatrix}
4 & 3 &2 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}.
\end{align*}

Une transvection et un troisième zéro

Vous déduisez que vous pouvez passer de la matrice $\begin{pmatrix} 1&0&0&0 \end{pmatrix}$ à la matrice $\begin{pmatrix} 1&0&0&7 \end{pmatrix}$, en remplaçant la colonne $C_4$ par la colonne $C_4+7C_1.$

\begin{pmatrix} 1&0&0&0 \end{pmatrix}\begin{pmatrix}
1 & 0 &0 & 7\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix} 1&0&0&7 \end{pmatrix}.

Du coup :

\begin{align*}
A
&=\begin{pmatrix} 1&0&0&7 \end{pmatrix}\begin{pmatrix}
4 & 3 &2 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix} 1&0&0&0 \end{pmatrix}\begin{pmatrix}
1 & 0 &0 & 7\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
4 & 3 &2 & 0\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix} 1&0&0&0 \end{pmatrix}\begin{pmatrix}
4 & 3 &2 & 7\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}.
\end{align*}

Pour la suite, vous posez :

\boxed{\begin{align*}
S &= \begin{pmatrix} 1&0&0&0 \end{pmatrix}\\
Q &= \begin{pmatrix}
4 & 3 & 2 & 7\\
1 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}.
\end{align*}
}

Alors :

\boxed{A = SQ.}

Montrez que la matrice $Q$ est inversible et que les coefficients de $Q^{-1}$ sont des entiers

La matrice $Q$ est le produit de quatre matrices de transvection qui ont pour déterminant $1.$ Ainsi, par produit des déterminants, $\det Q = 1.$ Comme $\det Q \neq 0$, la matrice $Q\in M_4(\Q)$ est inversible.

Comme $\det (Q)\times \det(Q^{-1}) = 1$ il vient $\det(Q^{-1})=1.$ Utilisant la comatrice de $Q$ notée $Q^{*}$, vous avez :

Q^{-1} = \det (Q^{-1})\  ^{t}(Q^{*}) = ^{t}(Q^{*}).

Or, comme $Q$ est à coefficients entiers, il en est de même de $Q^{*}$ donc de $^{t} Q^{*}.$

Donc $Q^{-1}$ est à coefficients entiers.

Calculez la matrice $Q^{-1}$

Quels que soit $(x_1,x_2,x_3,x_4)\in\Q^4$ et quels que soit $(y_1,y_2,y_3,y_4)\in\Q^4$ :

\begin{align*}

Q\begin{pmatrix}
x_1\\
x_2\\
x_3\\
x_4
\end{pmatrix}=
\begin{pmatrix}
y_1\\
y_2\\
y_3\\
y_4
\end{pmatrix}
&\Longleftrightarrow
\left\{\begin{array}{lllll}
4x_1 &+3x_2 &+2x_3 &+ 7x_4 &= y_1\\
\hphantom{4}x_1&+\hphantom{3}x_2&&&=y_2\\
&&\hphantom{+2}x_3&&=y_3\\
&&&\hphantom{+7}x_4&=y_4\\
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{lllll}
\hphantom{4}x_1&+\hphantom{3}x_2&&&=y_2\\
4x_1 &+3x_2 &+2x_3 &+ 7x_4 &= y_1\\
&&\hphantom{+2}x_3&&=y_3\\
&&&\hphantom{+7}x_4&=y_4\\
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{lllll}
\hphantom{4}x_1&+\hphantom{3}x_2&&&=y_2\\
 &-\hphantom{3}x_2 &+2x_3 &+ 7x_4 &= y_1-4y_2\\
&&\hphantom{+2}x_3&&=y_3\\
&&&\hphantom{+7}x_4&=y_4\\
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{ll}
x_1&=y_2-x_2\\
x_2&=2x_3+7x_4-y_1+4y_2 \\
x_3&=y_3\\
x_4 &= y_4
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{ll}
x_1&=y_2-x_2\\
x_2&=2y_3+7y_4-y_1+4y_2 \\
x_3&=y_3\\
x_4 &= y_4
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{ll}
x_1&=y_2-x_2\\
x_2&=-y_1+4y_2+2y_3+7y_4 \\
x_3&=y_3\\
x_4 &= y_4
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{ll}
x_1&=y_2+y_1-4y_2-2y_3-7y_4\\
x_2&=-y_1+4y_2+2y_3+7y_4 \\
x_3&=y_3\\
x_4 &= y_4
\end{array}
\right.
\\
&\Longleftrightarrow
\left\{\begin{array}{ll}
x_1&=y_1-3y_2-2y_3-7y_4\\
x_2&=-y_1+4y_2+2y_3+7y_4 \\
x_3&=y_3\\
x_4 &= y_4
\end{array}
\right.
\\
&\Longleftrightarrow
\begin{pmatrix}
x_1\\
x_2\\
x_3\\
x_4
\end{pmatrix}=\begin{pmatrix}
1&-3&-2&-7\\
-1 & 4 & 2 & 7\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
y_1\\
y_2\\
y_3\\
y_4
\end{pmatrix}
\end{align*}

Du coup :

Q^{-1} = \begin{pmatrix}
1&-3&-2&-7\\
-1 & 4 & 2 & 7\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}.

Résolvez l’équation $4x + 3y + 2z + 7t = 15$ pour $(x,y,z,t)\in\Z^4$

Analyse

Soit $(x,y,z,t)\in\Z^4$ tel que $4x+3y+2z+7t=15.$

Vous posez :

X'=QX=\begin{pmatrix}
4x+3y+2z+7t\\x+y\\z\\t
\end{pmatrix}.

Posez encore :

\left\{\begin{align*}
x' &= 4x+3y+2z+7t\\
y'&=x+y\\
z'&=z\\
t'&=t.
\end{align*}\right.

Remarquez que $(x’,y’,z’,t’)\in\Z^4.$

Vous déduisez successivement :

\begin{array}{l}
AX=B\\
SQX=B\\
SX'=B\\
\begin{pmatrix}
1 & 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}
x'\\y'\\z'\\t'
\end{pmatrix} = \begin{pmatrix}
15
\end{pmatrix}
\\
x'=15
\\
X'=\begin{pmatrix}
15\\y'\\z'\\t'
\end{pmatrix}
\\
QX=\begin{pmatrix}
15\\y'\\z'\\t'
\end{pmatrix}\\
X = Q^{-1} \begin{pmatrix}
15\\y'\\z'\\t'
\end{pmatrix}
\\
X = \begin{pmatrix}
1&-3&-2&-7\\
-1 & 4 & 2 & 7\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1
\end{pmatrix}\begin{pmatrix}
15\\y'\\z'\\t'
\end{pmatrix}
\\
X = \begin{pmatrix}
15-3y'-2z'-7t'\\
-15+4y'+2z'+7t'\\
z'\\
t'
\end{pmatrix}.
\end{array}

En définitive, il existe trois entiers relatifs $m$, $n$ et $p$ tels que :

\left\{\begin{align*}
x&=15-3m-2n-7p\\
y&=-15+4m+2n+7p\\
z&=n\\
t&=p.
\end{align*}
\right.

Synthèse

Soit $(m,n,p)\in\Z^3.$

Vous posez :

\left\{\begin{align*}
x&=15-3m-2n-7p\\
y&=-15+4m+2n+7p\\
z&=n\\
t&=p.
\end{align*}
\right.

Alors :

\begin{align*}
4x+3y+2z+7t &= 4(15-3m-2n-7p)\\
&\qquad+3(-15+4m+2n+7p)\\
&\qquad +2n+7p\\
&=60-12m-8n-28p\\
&\qquad -45+12m+6n+21p\\
&\qquad+2n+7p\\
&=15.
\end{align*}

Concluez

\boxed{\forall (x,y,z,t)\in\Z^4,\ 4x+3y+2z+7t=15 \Longleftrightarrow 
\left[
\exists(m,n,p)\in\Z^3, \left\{\begin{align*}
x&=15-3m-2n-7p\\
y&=-15+4m+2n+7p\\
z&=n\\
t&=p
\end{align*}
\right.
\right].
}

Partagez !

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.

Aidez-moi sur Facebook !

Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Lisez d'autres articles !

Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira !