Pour tout $n\in\N^{*}$ considérez la suite définie par $u_n=\displaystyle\sum_{k=1}^{n}\dfrac{1}{k}$.
Cette suite est à termes positifs et $\forall n\in\N^{*}, u_{n+1}-u_n = \dfrac{1}{n+1}$ est positif.
La suite $(u_n)_{n\geq 1}$ est croissante. Soit elle converge vers un réel, soit elle diverge vers $+\infty$.
Raisonnez par l’absurde
Supposez qu’il existe un nombre réel $\ell$ tel que $\displaystyle\lim_{n\to +\infty} u_n = \ell $.
Vous voulez arriver à une impossibilité.
Définissez des notations utiles
Notez $2\N$ l’ensemble des entiers naturels pairs et $2\N+1$ l’ensemble des entiers naturels impairs.
Pour tout réel $x$, notez $[x]$ le plus grand entier inférieur ou égal à $x$, appelé aussi partie entière de $x$.
Séparez les termes pairs des termes impairs
Soit $n$ un entier naturel supérieur ou égal à $3$.
\begin{aligned}
u_{n} &= \sum_{k=1}^{n} \dfrac{1}{k} \\
&= \sum_{k\in[1,n]\cap 2\N} \dfrac{1}{k} + \sum_{k\in[1,n]\cap (2\N+1)} \dfrac{1}{k} \\
&= \sum_{p=1}^{\left[\frac{n}{2}\right]} \dfrac{1}{2p}+ \sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{2p+1} \\
&=\dfrac{1}{2} \sum_{p=1}^{\left[\frac{n}{2}\right]} \dfrac{1}{p}+ \sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{2p+1} \\
\end{aligned}
Aussitôt : $\displaystyle\sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{2p+1} = u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}.$
Effectuez une soustraction à partir de la relation précédente
Soit $n$ un entier naturel supérieur ou égal à $3$.
Vous allez effectuer une soustraction en majorant le dénominateur $2p+1$ par $2p+2$. Vous faites apparaître une nouvelle somme grâce à la relation :$ \forall p\in\N, \dfrac{1}{2p+1} – \dfrac{1}{2p+2} = \dfrac{1}{(2p+1)(2p+2)}. $
\begin{aligned}
\displaystyle\sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{2p+1} -\sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{2p+2} &= u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{2p+2}\\
&= u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}\sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{p+1}\\
&= u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}\sum_{p=1}^{\left[\frac{n-1}{2}\right]+1} \dfrac{1}{p}\\
&= u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}\sum_{p=1}^{\left[\frac{n+1}{2}\right]} \dfrac{1}{p}\\
&= u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}u_{\left[\frac{n+1}{2}\right]}.\\
\end{aligned}
Aussitôt : $\displaystyle\sum_{p=0}^{\left[\frac{n-1}{2}\right]} \dfrac{1}{(2p+1)(2p+2)}= u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}u_{\left[\frac{n+1}{2}\right]}.$
Vous avez dans le terme de gauche une somme de termes strictement positifs. Vous la minorez par son premier terme lorsque $p=0$ :
$\forall n\geq 3, \dfrac{1}{2}\leq u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}u_{\left[\frac{n+1}{2}\right]}.$
Passez à la limite
Pour tout entier naturel $n$, $\left[\frac{n+1}{2}\right] > \frac{n+1}{2} -1$ et $\left[\frac{n}{2}\right] > \frac{n}{2} -1$.
Aussitôt, quand $n\to +\infty$, $\left[\frac{n+1}{2}\right]\to +\infty$ et $\left[\frac{n}{2}\right]\to +\infty.$
Et l’impossibilité apparaît
Par passage à la limite dans la relation : $\forall n\geq 3, \dfrac{1}{2}\leq u_n – \dfrac{1}{2} u_{\left[\frac{n}{2}\right]}-\dfrac{1}{2}u_{\left[\frac{n+1}{2}\right]}$
vous en déduisez que :
\begin{aligned}
\dfrac{1}{2}&\leq \ell – \dfrac{1}{2}\ell – \dfrac{1}{2}\ell\\
\dfrac{1}{2}&\leq 0.
\end{aligned}
Contradiction.
Conclusion
La série harmonique diverge vers $+\infty$.
$\lim_{n\to+\infty}\sum_{k=1}^{n}\dfrac{1}{k} = +\infty.$
Partagez!
Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.
Aidez-moi sur Facebook!
Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.
Lisez d'autres articles!
Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira!