Votre navigateur n'accepte pas le Javascript. La navigation sur ce site risque de ne pas fonctionner correctement.

131. L’exponentielle est dérivable au sens complexe et sa dérivée est elle-même

Il s'agit de justifier que, pour tout nombre complexe $z$, la limite $\lim_{h\to 0} \frac{\mathrm{exp}(z+h)-\mathrm{exp}(z)}{h}$ existe, quand $h$ est un nombre complexe tendant vers $0.$ Cela fera de la fonction exponentielle une fonction entière. Beaucoup mieux, vous allez démontrer que…

130. L’exponentielle complexe est un morphisme de groupes

L'objectif de cet article de démontrer que $\forall (z,z')\in\C^2, \mathrm{exp}(z)\mathrm{exp}(z')=\mathrm{exp}(z+z').$ Pour y parvenir, vous allez utiliser le fait que $\forall z\in\C, \lim_{n\to +\infty} \left(1+\frac{z}{n}\right)^n = \mathrm{exp}(z).$ Puis vous allez améliorer ce résultat, en justifiant que, si $(z_n)_{n\in\NN}$ est une suite…

129. Exponentielle d’un imaginaire pur, fonctions sinus et cosinus

D'après l'article 128, pour tout réel $x$, vous avez $\lim_{n\to +\infty} \left(1+\frac{ix}{n}\right)^n = \mathrm{exp}(ix).$ Quelles sont les propriétés de ce nombre complexe ? L'exponentielle d'un nombre imaginaire pur est un nombre complexe de module 1 Soit $x\in\R.$ Pour tout $n\in\NN$,…

128. Une définition de l’exponentielle

Soit $z$ un nombre complexe fixé. Considérez la suite suivante définie par $\forall n\in\NN, u_n = \left(1+\frac{z}{n}\right)^n.$ Vous allez démontrer que la suite $(u_n)_{n\in\NN}$ est convergente. Sa limite sera notée $\mathrm{exp}(z)$ et appelée exponentielle de $z.$ Les suites de Cauchy…

124. Equations de degré 4, des palindromes au cas général

Dans cet article, vous recherchez un moyen de trouver tous les candidats potentiels d'une équation réelle de degré 4. Les exemples sont choisis pour que les calculs restent compréhensibles bien que longs sur la fin de l'article. Vous allez constater…