Votre navigateur n'accepte pas le Javascript.La navigation sur ce site risque de ne pas fonctionner correctement.

081. Polynômes caractéristiques de AB et de BA

Dans cet article, vous considérez deux matrices carrées $A$ et $B$ à coefficients dans un corps $\K$, lorsque $\K = \R$ ou $\K=\C.$ Notez $I$ la matrice identité.

Que peut-on dire, en général, des polynômes caractéristiques des matrices $AB$ et $BA$ ?

Les deux polynômes sont égaux quand $A$ est inversible

Supposez que $A$ soit inversible.

Les matrices $AB$ et $BA$ sont semblables :
$A^{-1}(AB)A = (A^{-1}A)(BA) = IBA = BA.$

De ce fait elles ont le même polynôme caractéristique.

Que faire lorsque la matrice $A$ n’est pas inversible ?

Vous disposez d’un argument de topologie pour y répondre.

Notez $P(x) = \det(xI-A)$ le polynôme caractéristique de $A$. C’est un polynôme non constant à coefficients dans $\K$. Il est scindé dans $\C$ et admet un nombre fini de racines.

  • Soit $0$ est sa seule racine. Dans ce cas, pour tout $x\in ]0,+\infty[$, $P(x)\neq 0$. En particulier $\forall x\in ]0,1[, P(x)\neq 0.$
  • Soit il admet une ou plusieurs racines différentes de $0$. Notez $r>0$ le plus petit module de toutes ces racines. Alors $\forall x\in ]0,r[, P(x)\neq 0.$

Vous constatez que dans les deux cas énumérés ci-dessus il existe toujours un réel $\alpha>0$ tel que $\forall x\in ]0,\alpha[, P(x)\neq 0.$

Vous en déduisez que $\forall x\in ]0,\alpha[, A-xI$ est inversible.

D’après la partie précédente, pour tout $y$ tel que $0<y<\alpha$, $(A-yI)B$ et $B(A-yI)$ ont le même polynôme caractéristique.

Vous en déduisez que $\forall x\in\K, \forall y\in]0,r[$, $\det(xI-(A-yI)B)=\det(xI-B(A-yI)).$

Les deux déterminants ci-dessus sont des polynômes à deux variables en $x$ et $y$. Ce sont, en particulier, des fonctions continues à deux variables. Fixez $x\in\K$ et passez à la limite dans l’égalité $\det(xI-(A-yI)B)=\det(xI-B(A-yI))$ en faisant tendre $y$ vers $0$.

Vous obtenez l’égalité $\det(xI-AB)=\det(xI-BA).$

Concluez

Quelles que soient les matrices réelles ou complexes $A$ et $B$, les matrices $AB$ et $BA$ ont le même polynôme caractéristique.

Partagez!

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.

Aidez-moi sur Facebook!

Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Lisez d'autres articles!

Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira!