Votre navigateur n'accepte pas le Javascript.La navigation sur ce site risque de ne pas fonctionner correctement.

185. Les conditions de Cauchy-Riemann seules n’impliquent pas la dérivabilité au sens complexe

Dans le prolongement du contenu trouvé dans l'article 108, vous définissez la fonction $f$ suivante en posant $f(0)=0$ et $\forall z\in\C^{*}, f(z)=\e^{-1/z^4}.$

Démontrez que la fonction $f$ vérifie les conditions de Cauchy-Riemann

La fonction $\widetilde{f}$ est définie sur $\R^2$ en posant $\widetilde{f}(0,0)=0$ par $\forall (x,y)\in\R^2\setminus (0,0), \widetilde{f}(x,y) = \e^{-1/(x+iy)^4}.$

Soit $h$ un réel non nul.

$\begin{align*}
\frac{\widetilde{f}(h,0)-\widetilde{f}(0,0)}{h} &= \frac{\widetilde{f}(h,0)}{h} \\
&= \frac{\e^{-1/h^4}}{h} \\
&= h^3 \frac{\e^{-1/h^4}}{h^4}.
\end{align*}$

Pour tout réel $h$ non nul, $ \frac{\e^{-1/h^4}}{h^4} = \frac{1}{h^4}\e^{-1/h^4}.$

Or, quand $h$ tend vers $0$, $\frac{1}{h^4}$ tend vers $+\infty$.

Comme $\lim_{X\to +\infty}X \e^{-X} = 0$, par composition de limites vous obtenez $\lim_{h\to 0} \frac{\e^{-1/h^4}}{h^4} = 0$ et par suite il vient $\lim_{h\to 0} h^3 \frac{\e^{-1/h^4}}{h^4} = 0.$

Cela s’écrit $\lim_{h\to 0} \frac{\widetilde{f}(h,0)-\widetilde{f}(0,0)}{h} =0 $ donc la dérivée partielle $\frac{\partial \widetilde{f}}{\partial x}(0,0)$ existe et est égale à $0.$

Soit $h$ un réel non nul.

$\begin{align*}
\frac{\widetilde{f}(0,h)-\widetilde{f}(0,0)}{h} &= \frac{\widetilde{f}(0,h)}{h} \\
&= \frac{\e^{-1/(ih)^4}}{h} \\
&= \frac{\e^{-1/(h)^4}}{h} \\
&= h^3 \frac{\e^{-1/h^4}}{h^4}.
\end{align*}$

Comme précédemment, vous avez $\lim_{h\to 0} \frac{\widetilde{f}(0,h)-\widetilde{f}(0,0)}{h} = 0$ donc la dérivée partielle $\frac{\partial \widetilde{f}}{\partial y}(0,0)$ existe et est égale à $0.$

Le calcul de la somme $\frac{\partial \widetilde{f}}{\partial x}(0,0)+i\frac{\partial \widetilde{f}}{\partial y}(0,0)$ est immédiat.

Vous obtenez $\frac{\partial \widetilde{f}}{\partial x}(0,0)+i\frac{\partial \widetilde{f}}{\partial y}(0,0) = 0$ donc $f$ vérifie la condition de Cauchy-Riemann en $0.$

Démontrez que $f$ n’est pas dérivable au sens complexe en $0$

Raisonnez par l’absurde en supposant l’existence d’un nombre complexe $f'(0)$ tel que $\lim_{\substack{h\to 0\\h\in\C}} \frac{f(h)-f(0)}{h} = f'(0).$

Pour tout entier naturel $n$ non nul, posez $h_n = \frac{\e^{i\pi/4}}{n}$, de sorte que $\forall n\in\N^{*}, h_n^4 = \frac{-1}{n^4}.$

Comme $\lim_{n\to +\infty} h_n = 0$ et $f(0)=0$, il vient $\lim_{n\to +\infty} \frac{f(h_n)}{h_n} = f'(0)$ donc la suite $\left(\left\lvert\frac{f(h_n)}{h_n}\right\rvert\right)_{n\geq 1}$ est majorée.

Soit maintenant $n$ un entier naturel non nul.

$\begin{align*}
f(h_n) &= \e^{-1/h_n^4}\\
&=\e^{n^4}.
\end{align*}$

Du coup, $\frac{f(h_n)}{h_n} = \frac{\e^{n^4}}{\frac{\e^{i\pi/4}}{n}}$ donc :

$\begin{align*}
\left\lvert \frac{f(h_n)}{h_n} \right\rvert &= \frac{\e^{n^4}}{\frac{1}{n}} \\
&= n\e^{n^4}.
\end{align*}$

Or, quand $n\to +\infty$, $n^4\to +\infty$ donc $\e^{n^4}\to +\infty$ et par produit $n\e^{n^4} \to +\infty$ ce qui contredit le caractère majoré de la suite $\left(\left\rvert\frac{f(h_n)}{h_n}\right\rvert\right)_{n\geq 1}.$

Partagez !

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.

Aidez-moi sur Facebook !

Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Lisez d'autres articles !

Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira !