Contrairement au contenu rédigé dans l'article 084, vous allez utiliser un exemple à partir duquel vous allez construire les formules donnant les relations qui lient les sommes de Newton.
Soient $x_1$, $x_2$ et $x_3$ trois nombres complexes vérifiant les conditions suivantes :
\left\{\begin{align*} x_1+x_2+x_3 &= 3 \\ x_1^3+x_2^3+x_3^3 &= 15 \\ x_1^4+x_2^4+x_3^4 &= 35. \end{align*} \right.
Le but de cet article consiste à calculer la valeur de :
x_1^5+x_2^5+x_3^5
sans chercher à calculer explicitement les complexes $x_1$, $x_2$ et $x_3.$
Introduisez les symétries
Comme les données sont invariantes par permutation quelconque des complexes $x_1$, $x_2$ et $x_3$ vous allez poser :
\left\{\begin{align*} \sigma_1 &= x_1+x_2+x_3 \\ \sigma_2 &= x_1x_2+x_1x_3+x_2x_3 \\ \sigma_3 &= x_1x_2x_3. \end{align*} \right.
Introduisez les sommes de Newton
Pour tout entier $i$ supérieur ou égal à $1$, vous posez :
S_i = x_1^i+x_2^i+x_3^i.
Le problème est reformulé ainsi. Sachant que :
\left\{\begin{align*} S_1 &= 3\\ S_3 &= 15\\ S_4 &= 35 \end{align*} \right.
calculez le nombre $S_5.$
Calculez $\sigma_1$, $\sigma_2$ et $\sigma_3$
Comme :
\begin{align*} \sigma_1 &= x_1+x_2+x_3 \\ &= S_1\\ &=3 \end{align*}
il reste à calculer $\sigma_2$ et $\sigma_3.$
Etablissez un lien entre $S_2$ et $S_1$
Comme le degré total de $S_2$ est $2$, il est bienvenu de calculer $\sigma_1 S_1.$ En effet :
\begin{align*} \sigma_1 S_1 &= (x_1+x_2+x_3)(x_1+x_2+x_3) \\ &= x_1^2+x_1x_2+x_1x_3+x_1x_2+x_2^2+x_2x_3+x_1x_3+x_2x_3+x_3^2\\ &= S_2+2x_1x_2+2x_1x_3+2x_2x_3\\ &= S_2 + 2\sigma_2. \end{align*}
Vous obtenez la relation de Newton suivante :
\boxed{S_2 = \sigma_1S_1-2\sigma_2.}
Ainsi, il vient :
\boxed{S_2 = 9-2\sigma_2.}
Etablissez un lien entre $S_3$ et les sommes $S_1$ et $S_2$
Comme le degré total de $S_3$ est $3$, il est bienvenu de calculer $\sigma_1 S_2.$ En effet :
\begin{align*} \sigma_1 S_2 &= (x_1+x_2+x_3)(x_1^2+x_2^2+x_3^2) \\ &= x_1^3+x_1^2x_2+x_1^2x_3+x_1x_2^2+x_2^3+x_2^2x_3+x_1x_3^2+x_2x_3^2+x_3^3\\ &=S_3+x_1^2x_2+x_1^2x_3+x_1x_2^2+x_2^2x_3+x_1x_3^2+x_2x_3^2. \end{align*}
Vous posez :
\begin{align*} P_{2,1} &= x_1^2x_2+x_1^2x_3+x_1x_2^2+x_2^2x_3+x_1x_3^2+x_2x_3^2 \\ &= x_2^2x_1+x_3^2x_1+x_1^2x_2+x_3^2x_2+x_2^2x_3+x_1^2x_3 \\ &= (x_2^2+x_3^2)x_1+(x_1^2+x_3^2)x_2+(x_2^2+x_1^2)x_3 \\ &= \sum_{1\leq i\leq 3}\sum_{\substack{1\leq j\leq 3 \\j\neq i}}x_j^2x_i. \end{align*}
Vous avez obtenu :
\sigma_1 S_2 = S_3 + P_{2,1}.
De même, calculez $\sigma_2 S_1$ qui aura un degré total de $3.$
\begin{align*} \sigma_2 S_1 &= (x_1x_2+x_1x_3+x_2x_3)(x_1+x_2+x_3) \\ &= x_1^2x_2+x_1^2x_3+x_1x_2x_3+x_1x_2^2+x_1x_2x_3+x_2^2x_3+x_1x_2x_3+x_1x_3^2+x_2x_3^2\\ &=P_{2,1}+3\sigma_3. \end{align*}
Du coup :
\left\{\begin{align*} \sigma_1 S_2 &= S_3 + P_{2,1}\\ \sigma_2 S_1 &= P_{2,1} + 3\sigma_3. \end{align*} \right.
Par soustraction, vous éliminez $P_{2,1}$ et obtenez une nouvelle relation de Newton :
\boxed{S_3 = \sigma_1S_2-\sigma_2S_1+3\sigma_3.}
Ainsi, il vient :
15 = 3S_2-3\sigma_2+3\sigma_3.
Après division par $3$ :
\boxed{5 = S_2-\sigma_2+\sigma_3.}
Etablissez un lien entre $S_4$ et les sommes $S_1$, $S_2$, $S_3$
Comme le degré total de $S_4$ est $4$, il est bienvenu de calculer $\sigma_1 S_3.$ En effet :
\begin{align*} \sigma_1 S_3 &= (x_1+x_2+x_3)(x_1^3+x_2^3+x_3^3) \\ &= x_1^4+x_1^3x_2+x_1^3x_3+x_1x_2^3+x_2^4+x_2^3x_3+x_1x_3^3+x_2x_3^3+x_3^4\\ &=S_4+x_1^3x_2+x_1^3x_3+x_1x_2^3+x_2^3x_3+x_1x_3^3+x_2x_3^3. \end{align*}
Vous posez :
\begin{align*} P_{3,1} &= x_1^3x_2+x_1^3x_3+x_1x_2^3+x_2^3x_3+x_1x_3^3+x_2x_3^3 \\ &= (x_2^3+x_3^3)x_1+(x_1^3+x_3^3)x_2+(x_2^3+x_1^3)x_3 \\ &= \sum_{1\leq i\leq 3}\sum_{\substack{1\leq j\leq 3 \\j\neq i}}x_j^3x_i. \end{align*}
Vous avez obtenu :
\sigma_1 S_3 = S_4 + P_{3,1}.
De même, calculez $\sigma_2 S_2$ qui aura un degré total de $4.$
\begin{align*} \sigma_2 S_2 &= (x_1x_2+x_1x_3+x_2x_3)(x_1^2+x_2^2+x_3^2) \\ &=x_1^3x_2+x_1^3x_3+x_1^2x_2x_3+x_1x_2^3+x_1x_2^2x_3+x_2^3x_3+x_1x_2x_3^2+x_1x_3^3+x_2x_3^3\\ &=P_{3,1}+x_1^2x_2x_3+x_1x_2^2x_3+x_1x_2x_3^2. \end{align*}
Vous posez :
\begin{align*} P_{2,1,1} &= x_1^2x_2x_3+x_1x_2^2x_3+x_1x_2x_3^2\\ &= \sum_{1\leq i< j \leq 3}\sum_{\substack{1\leq k\leq 3 \\k \notin\{i,j\} }}x_k^2x_jx_i. \end{align*}
Ainsi :
\sigma_2 S_2 = P_{3,1}+P_{2,1,1}.
Vous calculez maintenant $\sigma_3 S_1.$
\begin{align*} \sigma_3 S_1 &= x_1x_2x_3(x_1+x_2+x_3)\\ &= x_1^2x_2x_3+x_1x_2^2x_3+x_1x_2x_3^2 \\ &=P_{2,1,1}. \end{align*}
Pour récapituler, vous avez :
\left\{\begin{align*} \sigma_1 S_3 &= S_4 + P_{3,1}\\ -\sigma_2 S_2 &= -P_{3,1} - P_{2,1,1}\\ \sigma_3 S_1 &= P_{2,1,1} \end{align*} \right.
Par somme, vous éliminez $P_{3,1}$ et $P_{2,1,1}.$ Vous obtenez une somme de Newton :
\boxed{S_4 = \sigma_1S_3 -\sigma_2S_2+\sigma_3S_1.}
Dans le cas présent, il vient :
35 = 3\times 15-\sigma_2 S_2+3\sigma_3.
Ainsi :
\boxed{\sigma_2 S_2 - 3\sigma_3=10.}
Résolvez le système obtenu
Il reste à déterminer $S_2$, $\sigma_2$ et $\sigma_3$ en sachant que ces nombres vérifient les conditions suivantes :
\left\{\begin{align*} S_2 +2\sigma_2&= 9\\ S_2-\sigma_2+\sigma_3&=5\\ \sigma_2 S_2 - 3\sigma_3&=10. \end{align*} \right.
Vous multipliez l’équation $2$ par $3$ et vous l’ajoutez à l’équation $3$ et vous obtenez :
3S_2-3\sigma_2+\sigma_2 S_2 =25.
Vous remplacez $S_2$ par $9-2\sigma_2$ pour obtenir :
\begin{align*} 3(9-2\sigma_2)-3\sigma_2+\sigma_2 (9-2\sigma_2) &=25\\ 27-6\sigma_2-3\sigma_2+9\sigma_2 -2\sigma_2^2 &=25\\ -2\sigma_2^2 +27 &=25\\ 2 &= 2\sigma_2^2 \\ 1 &= \sigma_2^2. \end{align*}
Finalement :
\sigma_2\in\{-1,1\}.
Traitez les deux cas obtenus
Premier cas
Supposez que :
\sigma_2 = 1.
Vous déduisez :
\begin{align*} S_2&= 9- 2\sigma_2\\ &= 9-2\\ &=7. \end{align*}
Puis :
\begin{align*} \sigma_2 S_2 -10 &=3\sigma_3 \\ 1\times 7-10 &=3\sigma_3 \\ -3 &= 3\sigma_3 \\ -1 &= \sigma_3. \end{align*}
En définitive :
\left\{\begin{align*} \sigma_1 &=3 \\ \sigma_2 &=1 \\ \sigma_3 &=-1. \end{align*} \right.
Les nombres $x_1$, $x_2$ et $x_3$ sont ainsi les trois racines du polynôme $X^3-\sigma_1 X^2+\sigma_2 X – \sigma_3.$
Plus précisément :
X^3-3X^2+ X + 1 = (X-x_1)(X-x_2)(X-x_3).
Pour calculer $S_5 = x_1^5+x_2^5+x_3^5$ il serait possible de l’exprimer, par les relations de Newton, en fonction de $S_4$, $S_3$ et $S_2.$ Vous allez utiliser une division euclidienne qui amènera à abaisser le degré $5.$
Vous effectuez la division euclidienne de $X^5$ par $X^3-3X^2+ X + 1$ qui sera le diviseur.
Vous abaissez le degré de $X^5$ en multipliant le diviseur par $X^2.$
X^5 - (X^3-3X^2+ X + 1)X^2 = 3X^4-X^3-X^2.
Partant du polynôme $3X^4-X^3-X^2$ vous abaissez son degré en multipliant le diviseur par $3X.$
3X^4-X^3-X^2 - (X^3-3X^2+ X + 1)(3X) = 8X^3-4X^2-3X.
Enfin, vous abaissez le degré de $8X^3-4X^2-3X$ en multipliant le diviseur par $8.$
8X^3-4X^2-3X - (X^3-3X^2+ X + 1)\times 8 = 20X^2-11X-8.
En sommant les trois égalités précédentes et après élimination des termes identiques dans les deux membres, il vient :
X^5 - (X^3-3X^2+ X + 1)(X^2+3X+8) = 20X^2-11X-8.
En substituant à $X$ les nombres $x_1$, $x_2$ et $x_3$ vous avez :
\forall i\in\llbracket 1, 3\rrbracket, x_i^5 = 20x_i^2-11x_i-8.
En sommant ces égalités, vous avez :
\begin{align*} S_5 &= 20S_2-11S_1-24\\ &=20\times 7-11\times 3-24\\ &=140-33-24\\ &=140-57\\ &=143-60\\ &=83. \end{align*}
Ainsi :
\boxed{x_1^5+x_2^5+x_3^5 = S_5 = 83.}
Second cas
Supposez que :
\sigma_2 = -1.
Vous déduisez :
\begin{align*} S_2&= 9- 2\sigma_2\\ &= 9+2\\ &=11. \end{align*}
Puis :
\begin{align*} \sigma_2 S_2 -10 &=3\sigma_3 \\ -1\times 11-10 &=3\sigma_3 \\ -21 &= 3\sigma_3 \\ -7 &= \sigma_3. \end{align*}
En définitive :
\left\{\begin{align*} \sigma_1 &=3 \\ \sigma_2 &=-1 \\ \sigma_3 &=-7. \end{align*} \right.
Les nombres $x_1$, $x_2$ et $x_3$ sont ainsi les trois racines du polynôme $X^3-\sigma_1 X^2+\sigma_2 X – \sigma_3.$
Plus précisément :
X^3-3X^2- X + 7 = (X-x_1)(X-x_2)(X-x_3).
Pour calculer $S_5 = x_1^5+x_2^5+x_3^5$ il serait possible de l’exprimer, par les relations de Newton, en fonction de $S_4$, $S_3$ et $S_2.$ Vous allez utiliser une division euclidienne qui amènera à abaisser le degré $5.$
Vous effectuez la division euclidienne de $X^5$ par $X^3-3X^2- X + 7$ qui sera le diviseur.
Vous obtenez successivement :
\begin{align*} X^5 - (X^3-3X^2- X + 7)X^2 &=3X^4 +X^3-7X^2\\ 3X^4 +X^3-7X^2 - (X^3-3X^2- X + 7)(3X) &=10X^3-4X^2-21X\\ 10X^3-4X^2-21X - (X^3-3X^2- X + 7)\times 10 &=26X^2-11X-70. \end{align*}
Par somme :
X^5-(X^3-3X^2- X + 7)(X^2+3X+10)=26X^2-11X-70.
Ainsi, en substituant trois fois $X$ par $x_1$, $x_2$ et $x_3$ puis en sommant :
\begin{align*} S_5 &= 26S_2-11S_1-210\\ &=26\times11-11\times 3-210\\ &=23\times 11 - 210\\ &=253-210\\ &=43. \end{align*}
Ainsi :
\boxed{x_1^5+x_2^5+x_3^5 = S_5 = 43.}
Concluez
Il a été établi que $\boxed{S_5 \in \{43,83\} .}$
Partagez !
Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.
Aidez-moi sur Facebook !
Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.
Lisez d'autres articles !
Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira !