Dans cet article vous allez prouver un résultat attribué à un mathématicien allemand Franz Mertens, qui a prouvé une propriété de convergence sur les séries de nombres complexes.
Soient $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ deux séries de nombres complexes.
Supposez que $\sum_{n\geq 0} b_n$ converge vers un nombre complexe $b$ noté $\sum_{n=0}^{+\infty} b_n$ et que la série $\sum_{n\geq 0} a_n$ est absolument convergente, autrement dit $\sum_{n = 0}^{+\infty} \lvert a_n \rvert < +\infty.$
Alors la série $\sum_{n\geq 0} a_n$ est convergente, vous notez $a = \sum_{n= 0}^{+\infty} a_n.$
Pour tout entier naturel $n$ vous posez $c_n =\sum_{k=0}^n a_kb_{n-k}.$ La série $\sum_{n \geq 0} c_n$ est appelée produit de Cauchy des séries $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n.$
Sous les hypothèses ci-dessus, vous allez démontrer que la série $\sum_{n \geq 0} c_n$ est convergente et que sa somme $\sum_{n =0}^{+\infty} c_n$ est égale au produit $ab = \left(\sum_{n = 0}^{+\infty} a_n\right)\left(\sum_{n = 0}^{+\infty} b_n\right).$
Trouvez une écriture convenable pour la somme $\sum_{p=0}^n c_p$
Calculez les premiers termes :
\begin{aligned}
c_0 &= a_0b_0\\
c_1 &= a_0b_1+a_1b_0\\
c_2 &= a_0b_2+a_1b_1+a_2b_0.
\end{aligned}
Si bien que :
\begin{aligned}
c_0 +c_1+c_2&= a_0(b_0+b_1+b_2)+a_1(b_0+b_1)+a_2b_0.
\end{aligned}
Pour tout entier naturel $n$, posez $\boxed{B_n = \sum_{p=0}^n b_p.}$
Vous obtenez :
\begin{aligned}
c_0 +c_1+c_2&= a_0B_2+a_1B_1+a_2B_0.
\end{aligned}
Généralisez avec une récurrence.
Pour tout entier naturel $n$, notez $P(n)$ la propriété suivante : « $\sum_{p=0}^n c_p = \sum_{p=0}^n a_pB_{n-p}$. »
Initialisation. Pour $n=0$ :
\begin{aligned}
\sum_{p=0}^n c_p &= c_0 \\ &= a_0b_0 \\ &= a_0B_0 \\ &= \sum_{p=0}^n a_pB_{n-p}.
\end{aligned}
Hérédité. Soit $n$ un entier naturel fixé tel que $P(n)$ soit vérifiée.
\begin{aligned}
\sum_{p=0}^{n+1} c_p &= \sum_{p=0}^{n} c_p + c_{n+1}\\
&= \sum_{p=0}^n a_pB_{n-p} +c_{n+1}\\
&= \sum_{p=0}^n a_pB_{n-p} +\sum_{p=0}^{n+1} a_p b_{n+1-p}\\
&= \sum_{p=0}^n a_pB_{n-p} +\sum_{p=0}^{n} a_p b_{n+1-p} + a_{n+1}b_0\\
&= \sum_{p=0}^n a_p (B_{n-p} + b_{n+1-p}) + a_{n+1}b_0\\
&= \sum_{p=0}^n a_p (B_{n-p} + b_{n-p+1}) + a_{n+1}b_0\\
&= \sum_{p=0}^n a_p \left(\sum_{k=0}^{n-p} b_k + b_{n-p+1}\right) + a_{n+1}b_0\\
&= \sum_{p=0}^n a_p \left(\sum_{k=0}^{n-p+1} b_k\right) + a_{n+1}b_0\\
&= \sum_{p=0}^n a_p B_{n+1-p} + a_{n+1}b_0\\
&= \sum_{p=0}^n a_p B_{n+1-p} + a_{n+1}B_0\\
&= \sum_{p=0}^{n+1} a_p B_{n+1-p}.
\end{aligned}
Donc $P(n+1)$ est vérifiée.
Conclusion. Par récurrence vous avez établi que :
\begin{aligned} \boxed{\forall n\in\N, \sum_{p=0}^n c_p = \sum_{p=0}^n a_pB_{n-p}.}\end{aligned}
Démontrez que $\lim_{n\to +\infty} \sum_{p=0}^n c_p = ab$
Par définition de la suite $(B_n)_{n\geq 0}$ vous avez $\lim_{n\to +\infty} B_n = b.$ Cette suite étant convergente, elle est bornée : il existe un réel $M$ strictement positif tel que, pour tout $n\in\N$, $\lvert B_n \rvert \leq M.$
Soit maintenant $\varepsilon$ un réel strictement positif.
Comme $\lim_{n\to +\infty} \sum_{p=0}^n a_p = a$, il existe un entier naturel $N_1$ tel que, pour tout $n\geq N_1$, $\left\lvert \sum_{p=0}^n a_p -a \right\rvert\leq \frac{\varepsilon / 3}{\lvert b \rvert +1}.$
Comme $\sum_{k=0}^{+\infty} \lvert a_k \rvert < +\infty$, il existe un entier naturel $N_2$ tel que, pour tout $n\geq N_2$, $\sum_{k=n}^{+\infty} \lvert a_k \rvert \leq \frac{\varepsilon / 3}{M + \lvert b \rvert }.$
Comme $\lim_{n\to +\infty}B_n = b $, il existe un entier naturel $N_3$ tel que, pour tout $n\geq N_3$, $\left\lvert B_n -b \right\rvert \leq \frac{\varepsilon / 3}{1+ \sum_{k=0}^{+\infty} \lvert a_k \rvert}.$
Notez $N = \mathrm{Max}(N_1,N_2,N_3, 1)$.
Supposez que $n$ est un entier naturel tel que $n\geq 2N.$
\begin{aligned}
\left\lvert \sum_{p=0}^n c_p – ab \right\rvert &\leq \left\lvert \sum_{p=0}^n a_pB_{n-p}- ab \right\rvert \\
&\leq \left\lvert \sum_{p=0}^n a_p(B_{n-p} – b) \right\rvert + \left\lvert \sum_{p=0}^n ba_p – ab \right\rvert \\
&\leq \left\lvert \sum_{p=0}^n a_p(B_{n-p} – b) \right\rvert + \left\lvert b \right\rvert \left\lvert \sum_{p=0}^n a_p – a \right\rvert \\
&\leq \left\lvert \sum_{p=0}^n a_p(B_{n-p} – b) \right\rvert + \left\lvert b \right\rvert \times \frac{\varepsilon / 3}{\lvert b \rvert +1} \\
&\leq \left\lvert \sum_{p=0}^n a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \left\lvert \sum_{p=0}^N a_p(B_{n-p} – b) \right\rvert + \left\lvert \sum_{p=N+1}^{n} a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \sum_{p=0}^N \lvert a_p\rvert \lvert B_{n-p} – b\rvert + \left\lvert \sum_{p=N+1}^{n} a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \sum_{p=0}^N \left(\lvert a_p\rvert \times \frac{\varepsilon / 3}{1+ \sum_{k=0}^{+\infty} \lvert a_k \rvert}\right) + \left\lvert \sum_{p=N+1}^{n} a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon / 3}{1+ \sum_{k=0}^{+\infty} \lvert a_k \rvert} \times \sum_{p=0}^N \lvert a_p\rvert + \left\lvert \sum_{p=N+1}^{n} a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon / 3}{1+ \sum_{k=0}^{+\infty} \lvert a_k \rvert} \times \sum_{p=0}^{+\infty} \lvert a_p\rvert + \left\lvert \sum_{p=N+1}^{n} a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon}{3} + \left\lvert \sum_{p=N+1}^{n} a_p(B_{n-p} – b) \right\rvert + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon}{3} + \sum_{p=N+1}^{n} \lvert a_p \rvert (M + \lvert b \rvert) + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon}{3} + (M + \lvert b \rvert) \sum_{p=N+1}^{n} \lvert a_p \rvert + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon}{3} + (M + \lvert b \rvert) \sum_{p=N+1}^{+\infty} \lvert a_p \rvert + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon}{3} + (M + \lvert b \rvert) \times \frac{\varepsilon / 3}{M + \lvert b \rvert } + \frac{\varepsilon}{3} \\
&\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\
&\leq \varepsilon.
\end{aligned}
Cela termine la démonstration.
Résumez et concluez
Si deux séries $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ sont convergentes et que l’une d’entre elles est absolument convergente, alors la série du produit de Cauchy $\sum_{n\geq 0} \left(\sum_{k=0}^n a_kb_{n-k}\right)$ est convergente et de plus :
\begin{aligned} \boxed{\sum_{n= 0}^{+\infty} \left(\sum_{k=0}^n a_kb_{n-k} \right)= \left(\sum_{n= 0}^{+\infty} a_n\right)\left(\sum_{n= 0}^{+\infty} b_n\right).}\end{aligned}
Prolongement
Soit $q$ un nombre complexe tel que $\lvert q \rvert < 1.$
Pourriez-vous démontrer que la série $\sum_{n\geq 0} (n+1)q^n$ est convergente ?
Montrez alors que sa somme est donnée par $\sum_{n=0}^{+\infty} (n+1)q^n = \frac{1}{(1-q)^2}.$
Partagez !
Diffusez cet article auprès de vos connaissances susceptibles d'être concernées en utilisant les boutons de partage ci-dessous.
Aidez-moi sur Facebook !
Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.
Lisez d'autres articles !
Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira !