Votre navigateur n'accepte pas le Javascript.La navigation sur ce site risque de ne pas fonctionner correctement.

356. Une version faible du théorème des nombres premiers (1/2)

Pour tout réel $x$, vous notez $\pi(x)$ le nombre de nombre premiers qui sont inférieurs ou égaux à $x.$

Formellement, cela se note ainsi :

\boxed{\forall x\in\R, \pi(x) = \sum_{p\leq x} 1.}

Exemple. En énumérant tous les entiers de $1$ à $10$, vous constatez que seuls $2$, $3$, $5$ et $7$ sont premiers, ce qui fournit 4 nombres premiers, donc $\pi(10) = 4.$

Le théorème des nombres premiers énonce que :

\lim_{x\to +\infty} \frac{\pi(x)}{\frac{x}{\ln x}} = 1.

Il sera démontré dans cet article une version faible, à savoir :

\forall n\in\N, n\geq 4 \implies \pi(n) \geq \frac{\ln 2}{2}\times\frac{n}{\ln n}.

Dans tout cet article, la lettre $p$ sous un symbôle de sommation désignera un nombre premier.

Valuation $p$-adique d’un entier

Étant donnés un entier $n\geq 2$ et un nombre premier $p$, vous appelez valuation $p$-adique de $n$ l’entier noté $\boxed{v_p(n)}$ égal à l’exposant de $p$ dans sa décomposition en produit de nombres premiers.

Par exemple, si vous prenez $350$, vous obtenez :

\begin{align*}
350 &= 35\times 10\\
&= 7\times 5 \times 2\times 5\\
&=2^1\times 5^2\times 7^1.
\end{align*}

Ainsi, $v_2(350)=1$, $v_5(350)=2$ et $v_7(350) = 1.$

Lorsqu’un nombre premier n’apparaît pas explicitement dans la décomposition en produit de nombres premiers, il est toujours possible d’utiliser la puissance $0.$ Comme $13^0 = 1$ vous avez :

350 = 2^1\times 5^2\times 7^1\times 13^0.

Cela permet d’écrire $v_{13}(350) = 0.$

Le $PPCM$ des premiers entiers naturels

Pour tout entier naturel $n\geq 2$, vous notez $\boxed{\Delta_n}$ le plus petit multiple commun des entiers naturels compris entre $1$ et $n.$ C’est aussi le $PPCM$ des entiers naturels compris entre $2$ et $n.$

Exemple. Vous avez :

\begin{align*}
\Delta_6 &= PPCM(1,2,3,4,5,6)\\
&= PPCM(2,3,4,5,6).
\end{align*}

Parmi les entiers naturels allant de $2$ à $6$, seuls les nombres premiers $2$, $3$ et $5$ sont utilisés. Vous avez en effet, pour chaque décomposition en produit de nombres premiers :

\begin{align*}
2 &= 2^1\times 3^0 \times 5^0\\
3 &= 2^0\times 3^1 \times 5^0\\
4 &= 2^2\times 3^0 \times 5^0\\
5 &= 2^0\times 3^0 \times 5^1\\
6 &= 2^1\times 3^1 \times 5^0.
\end{align*}

Pour obtenir le $PPCM$ de ces entiers, vous prenez la valuation $p$-adique maximale pour chaque nombre premier $p$ appartenant à $\{2,3,5\}.$

Autrement dit, pour tout $p\in\{2,3,5\}$ vous avez :

v_p(\Delta_6) = \max \{v_p(k), 2\leq k \leq 6\}.

Du coup :

\left\{\begin{align*}
v_2(\Delta_6) &= 2\\
v_3(\Delta_6) &= 1\\
v_5(\Delta_6) &= 1.
\end{align*}
\right.

Vous en déduisez que :

\boxed{\Delta_6 = 2^2\times 3^1\times 5^1 = 60.}

Montrez que pour tout nombre premier $q$ et pour tout entier $n\geq 2$ vous avez $q^{v_q(\Delta_n)}\leq n$

Soit $q$ un nombre premier et soit $n$ un entier tel que $n\geq 2.$

Vous avez $v_q(\Delta_n) = \max \{v_q(k), 2\leq k \leq n\}.$

Comme l’ensemble $\{v_q(k), 2\leq k \leq n\}$ est fini, il existe un entier $k_0$ compris entre $2$ et $n$ tel que $v_q(k_0) = \max \{v_q(k), 2\leq k \leq n\}.$

Or l’entier $k_0$ est égal au produit suivant :

k_0 = \prod_{p\leq n} p^{v_p(k_0)}. 

Premier cas. Si $q$ est inférieur ou égal à $n$, il apparaît dans le produit de $k_0$ et donc $q^{v_q(k_0)}\leq k_0.$ Or $k_0$ est inférieur ou égal à $n$ donc $q^{v_q(k_0)}\leq n.$

Il a été vu que $v_q(\Delta_n) = v_q(k_0)$ ce qui prouve le résultat suivant :

\boxed{q^{v_q(\Delta_n)} \leq n.}

Second cas. Si $q$ est strictement supérieur à $n$, alors $q$ ne peut apparaître dans aucune décomposition en facteurs premiers de $k$ où $k\in\llbracket 2, n\rrbracket$ donc $v_q(\Delta_n) = 0$ et donc $q^{v_q(\Delta_n)} = 1.$ Comme $n\geq 2$ vous déduisez que l’inégalité $q^{v_q(\Delta_n)} \leq n$ est encore valable.

Montrez que pour tout entier $n\geq2$ vous avez $\Delta_n \leq n^{\pi(n)}$

Soit $n$ un entier supérieur ou égal à $2.$ Vous notez $s=\pi(n)$ et $p_1,\dots,p_s$ les nombres premiers des décompositions en facteurs premiers de tous les entiers $k$ compris entre $2$ et $n.$

Utilisant les valuations, vous obtenez :

\forall k\in\llbracket 2, n\rrbracket, k= \prod_{i=1}^s p_i^{v_{p_i}(k)}.

Pour tout $i\in\llbracket 1, s\rrbracket$, vous avez $v_{p_i}(\Delta_n) = \max \{v_{p_i}(k), 2\leq k\leq n\}$ avec :

 \Delta_n= \prod_{i=1}^s p_i^{v_{p_i}(\Delta_n)}.

D’après le résultat établi à la précédente section :

\forall i\in\llbracket 1, s\rrbracket, p_i^{v_{p_i}(\Delta_n)} \leq n.

Du coup :

\begin{align*}
\Delta_n &\leq \prod_{i=1}^s n\\
&\leq n^s\\
&\leq n^{\pi(n)}.
\end{align*}

Il a été prouvé que :

\boxed{\forall n\geq 2, \Delta_n \leq n^{\pi(n)}.}

Déduisez-en une version faible du théorème des nombres premiers

Soit $n$ un entier supérieur ou égal à $4.$

Alors :

\begin{align*}
n&\geq 4\\
2n &\geq 4+n\\
2n-4&\geq n\\
n-2&\geq \frac{n}{2}.
\end{align*} 

Note. Cette astuce est effectuée afin de pouvoir appliquer la fonction logarithme sans faire apparaître de soustraction.

D’après le contenu rédigé dans l'article 348 vous avez $\Delta_n \geq \frac{2^n}{4}.$

Utilisant le fait que $\frac{2^n}{4} = 2^{n-2}$ vous avez $\Delta_n \geq 2^{n/2}.$

Du coup, en tenant compte de la section précédente :

\begin{align*}
2^{n/2} &\leq n^{\pi(n)} \\
\frac{n}{2}\ln 2  &\leq \pi(n) \ln n\\
\frac{\ln 2}{2}\times \frac{n}{\ln n} &\leq \pi(n).
\end{align*}

Vous avez obtenu le résultat souhaité :

\boxed{\forall n\in\N, n\geq 4 \implies  \frac{\ln 2}{2}\times\frac{n}{\ln n} \leq \pi(n).}

Prolongement

Allez lire le contenu rédigé dans l'article 357 pour obtenir une majoration de la fonction $\pi.$

Partagez !

Diffusez cet article auprès de vos connaissances susceptibles d'être concernées.

Aidez-moi sur Facebook !

Vous appréciez cet article et souhaitez témoigner du temps que j'y ai passé pour le mettre en œuvre. C'est rapide à faire pour vous et c'est important pour moi, déposez un j'aime sur ma page Facebook. Je vous en remercie par avance.

Lisez d'autres articles !

Parcourez tous les articles qui ont été rédigés. Vous en trouverez sûrement un qui vous plaira !